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Abstract

Motivation: Proteogenomics has been well accepted as a tool to discover novel genes. In most

conventional proteogenomic studies, a global false discovery rate is used to filter out false posi-

tives for identifying credible novel peptides. However, it has been found that the actual level of

false positives in novel peptides is often out of control and behaves differently for different

genomes.

Results: To quantitatively model this problem, we theoretically analyze the subgroup false discov-

ery rates of annotated and novel peptides. Our analysis shows that the annotation completeness

ratio of a genome is the dominant factor influencing the subgroup FDR of novel peptides.

Experimental results on two real datasets of Escherichia coli and Mycobacterium tuberculosis sup-

port our conjecture.
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Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tandem mass spectrometry (MS/MS)-based proteogenomics (Jaffe

et al., 2004) has been applied to refinement of annotated genes,

discovery of novel genes (Kim et al., 2014), personal genomics and dis-

ease-related studies (Zhang et al., 2014). Unlike traditional genomic

annotation techniques, such as in silico (ab initio or comparative) or

cDNA-seq-based methods, proteogenomics allows validating protein-

coding genes directly at the protein level, which is more favorable

(Renuse et al., 2011). To identify novel genes, researchers usually search

the experimental MS/MS spectra against a large protein database that is

constructed from the genomic or transcriptomic sequences and filter the

search results to control the false discovery rate (FDR). It has been

observed previously that, under a fixed FDR, the inflated database gen-

erated by, e.g. six-open-reading-frame (6-ORF) translation of a whole

genome significantly decreases the sensitivity of peptide identification

(Blakeley et al., 2012). However, few studies probe into the effect

of the large database on the estimated FDR, especially for the novel

peptides.

Most proteogenomic studies estimate a global FDR for all pep-

tide identifications (Borchert et al., 2010; Chaerkady et al., 2011;

Merrihew et al., 2008). That is, the identifications of annotated pep-

tides and novel peptides are subject to FDR estimation in combin-

ation. Some researchers noted the high actual FDR of novel peptides

and therefore employed more stringent filtering strategies, e.g. post

error probability (Brosch et al., 2011) or separate FDRs for anno-

tated and novel peptides (Branca et al., 2014). Recently, Krug et al.

(2013) highlighted that for well-annotated genomes, such as the

Escherichia coli genome, the post error probability distribution of
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novel peptide hits is almost identical to that of decoy hits, indicating

that most novel peptides were false positives. Krug’s work implied

that the identification accuracy of novel peptides is greatly affected

by the completeness of genome annotation.

In fact, the relationship between annotated and novel peptides is

quite similar to that between unmodified and modified peptides.

Recently, Fu has formally studied the factors that influence the sub-

group FDRs of differently modified peptides (Fu, 2012; Fu and

Qian, 2014). Here, we follow the same framework as in Fu’s work

to quantitatively investigate the subgroup FDRs of annotated and

novel peptides identified by 6-ORF translation search.

2 Methods

Let subscript k 2 fann; newg denote the subgroup of annotated

(ann) and novel (new) peptide identifications, respectively. Here, the

novel peptides are those from the previously unannotated region on

a genome, excluding the peptide variants resulting from DNA muta-

tion or mRNA alternative splicing. Then following Fu’s formaliza-

tion, we define (i) T, a true peptide identification; (ii) F, a false

peptide identification; (iii) Ik, a peptide identification belonging to

subgroup k; (iv) FDRðxÞ, the global FDR of peptide identifications

that score better than x, where both annotated and novel peptides

are included; (v) FDRkðxÞ, the subgroup FDR, e.g. FDRannðxÞ for

annotated peptides and FDRnewðxÞ for novel ones. Following the

derivation by Fu and Qian (2014), FDRkðxÞ can be written as

FDRkðxÞ ¼
FDRðxÞ

FDRðxÞ þ PðIk jT;X>xÞ
PðIk jF;X>xÞ

�
1� FDRðxÞ

� ; (1)

where PðIkjT;X > xÞ is the probability that an identification be-

longs to subgroup k under the condition that this identification is

true and scores better than x, and PðIkjF;X > xÞ is the probability

that an identification belongs to subgroup k under the condition

that this identification is false and scores better than x. Equation (1)

implies that FDRkðxÞ is determined by three variables, i.e. FDRðxÞ,
PðIkjT;X > xÞ and PðIkjF;X > xÞ.

To make the relationship in Equation (1) computable, we need to

evaluate PðIkjT;X > xÞ and PðIkjF;X > xÞ, for both annotated and

novel peptides. Note that we assume FDRðxÞ can be readily estimated

using some methods, e.g. the commonly used target-decoy search

strategy (Elias and Gygi, 2007). For convenience of discussion, we

introduce two quantities: (i) h, the annotation completeness ratio,

defined as the length ratio of the currently annotated genes to all genes

on the genome; (ii) l, the annotation length ratio, defined as the

length ratio of currently annotated genes to the whole genome.

Presuming that only one gene exists at any genomic locus, the value

scope of l is ½0;1�. Actually, l varies across species even if their gen-

omes are well annotated (for E.coli it is about 0.88 and for Homo sa-

piens, it is less than 0.02). However, for a poorly annotated genome,

l is relatively small, and we have l ¼ 0 if no gene is annotated.

Suppose that the annotated and novel peptides could be equally

likely retrieved by the search engine and their scores are identically

distributed, then apparently, we have PðIannjT;X > xÞ ¼ h and

PðInewjT;X > xÞ ¼ 1� h. PðIkjF;X > xÞ depends on the sizes of the

annotated database and the translated database. Given the gen-

ome length L, the summed length of annotated genes is lL. If

falsely identified peptides distribute uniformly on the genome, we

have PðIannjF;X > xÞ ¼ lL=6L ¼ l=6 and PðInewjF;X > xÞ ¼
ð6� lÞ=6. So far, we have obtained the probabilities that an identi-

fied peptide is an annotated or novel peptide given that this

identification is true or false and scores better than x, as summarized

in Table 1.

Now we first come to the formulation of FDRannðxÞ:

FDRannðxÞ ¼
FDRðxÞ

FDRðxÞ þ 6h
l

�
1� FDRðxÞ

� : (2)

The value of l=h represents the length proportion of all genes on the

genome and is a constant for a certain species. Therefore, we can

conclude that FDRannðxÞ depends only on FDRðxÞ.
Similarly, we can write FDRnewðxÞ as

FDRnewðxÞ ¼
FDRðxÞ

FDRðxÞ þ 6ð1�hÞ
6�l

�
1� FDRðxÞ

� : (3)

If a genome has never been annotated (h¼0, m¼0), then

no identification could be an annotated peptide and

FDRnewðxÞ ¼ FDRðxÞ, which is consistent with the assumption. If a

genome is completely annotated (h¼1), then FDRnewðxÞ ¼ 1, mean-

ing that all novel peptide identifications are false, which is also con-

sistent with the assumption; in this case, as FDRðxÞ and m are

usually very small, FDRannðxÞ approximately equals l=6 of FDRðxÞ.
If we take FDRðxÞ ¼ 1%, the FDRannðxÞ is only 1.5% for E.coli

(m¼0.88) and 0.03% for H.sapiens (m<0.02), much more conser-

vative than FDRðxÞ. On the other hand, if we assume h ¼ 0:999, l
¼ 0:6 and FDRðxÞ ¼ 1%, then we have PðInewjT;X > xÞ ¼ 1=1000

and PðInewjF;X > xÞ¼9/10. The calculated FDRnewðxÞ is 90.1%,

as large as 90 times of FDRðxÞ. In contrast, the FDRannðxÞ is only

1%. We can see that for well annotated genomes, FDRannðxÞ is over-

estimated, while FDRnewðxÞ is underestimated, if a global FDR is

controlled.

Since 0 � l � 1, we have 5=6 � PðInewjF;X > xÞ � 1. It is easy

to deduce from Equation (3) that l, as a parameter quantitatively re-

flecting the length ratio of the annotated genes to the whole genome,

has little influence on FDRnewðxÞ. Let us take FDRðxÞ ¼ 1%, then

for different h, the upper and lower bounds (occurring when l ¼ 0

and l ¼ 1, respectively) of FDRnewðxÞ can be calculated and are de-

picted by the dashed blue and solid red lines, respectively, in Figure

1. It is worth emphasizing that FDRnewðxÞ is less than 10% if h does

not exceed 90%. However, as h increases over 90%, FDRnewðxÞ
ramps up quickly to a much higher level. Thus, we conclude that h
significantly affects FDRnewðxÞ. Nevertheless, given FDRðxÞ ¼ 1%,

the maximum difference between the upper and lower bounds of

FDRnewðxÞ is less than 4.6%, and thus l does not substantially

change FDRnewðxÞ, just as we deduced above.

3 Results

By removing some genes from a completely annotated database

based on their summed length, we could perform numerical simula-

tion of h. Then, experimental FDRannðxÞ, which is the ratio of the

number of identified annotated decoys to the number of annotated

targets, and FDRnewðxÞ, which is the ratio of the number of identified

novel decoys to the number of novel targets, can be calculated and

compared to the theoretical ones [computed by Equations (2) and

(3)]. On the basis of this idea, we experimentally validated our theor-

etical model on two species, i.e. E.coli and Mycobacterium

tuberculosis.

3.1 Results on E.coli
Krug et al. (2013) concluded that the E.coli genome might have

achieved a complete annotation. We downloaded one of these

E.coli’s datasets from PeptideAtlas, which consisted of six raw files
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(trypsin digested, SAX_01�SAX_06), 300 032 MS/MS spectra in

total. The latest genome sequence and annotation data

(NC_000913.3) were downloaded from the NCBI website. First, a

stop-to-stop 6-ORF translation was applied to the E.coli’s genome,

and a commonly used contaminant database containing porcine

trypsin and human keratins was concatenated. The simply reversed

form of each protein sequence in the combined database was added,

resulting in a combined target-decoy database to facilitate FDR esti-

mation (Elias and Gygi, 2007). Next, the MS/MS spectra were

searched against the combined database using pFind studio (version

2.8). Peptides were digested in silico with up to two missed cleavages

allowed, and carbamidomethylation on cysteine was set as the fix

modification and oxidation on methionine as the variable modifica-

tion. The precursor and fragment mass error tolerances were set

to 6 20 ppm and 6 0.5 Da, respectively. A global peptide-level FDR

of 1% was used for quality assessment, which allowed us to identify

12 835 peptides. Among these peptides, 113 were contaminant ones,

12 619 were annotated ones and 103 were novel ones. Since the

E.coli’s genome has been almost completely annotated, the 103

novel target identifications should be mostly false ones. Just as ex-

pected, among the 128 decoy identifications above the threshold of

FDR < 1%, 97 were novel decoys, very close to the number of novel

targets, indicating that the subgroup FDR of novel peptides was

close to 1 (97/103¼0.94).

To simulate h, we randomly removed some genes from the anno-

tated database to vary the ratio of their summed length to all genes.

Using the same global FDR threshold of 1%, we obtained the num-

bers of targets and decoys separately on annotated and novel peptides,

allowing us to calculate the experimental FDRannðxÞ and FDRnewðxÞ.
Given h and l, the theoretical FDRannðxÞ and FDRnewðxÞ were also

calculated through Equations (2) and (3). Our simulation showed

that, the experimental FDRannðxÞ were close to the theoretical

value of 1.5%, with a minimum of 2.1% and a maximum of

3.6%. Moreover, the experimental FDRnewðxÞ fits well with the

theoretical counterpart, as shown in Figure 2A. On the other hand,

we can deduce the value of h from the experimental FDRnewðxÞ based

on Equation (3). As shown in Figure 2, the pairs of sampled

and deduced values of h distribute diagonally, indicating that the

deduced h could be used as an estimate of the real annotation com-

pleteness ratio.

We also found that if we remove the ‘novel genes’ from the anno-

tated database and search the spectra of novel peptides (identified

by 6-ORF translation search) against the partially annotated data-

base, then these spectra will be assigned with false peptides and ran-

dom scores (see Supplementary Materials S2 and S3 for more

details).

3.2 Results on M.tuberculosis
M.tuberculosis is another organism that has undergone several pro-

teogenomic studies (de Souza et al., 2008; Kelkar et al., 2011).

The annotation length ratio of M.tuberculosis is about 0.91, and

its genome is featured by the high GC content. Therefore, we se-

lected M.tuberculosis as the second organism to verify our model. A

dataset of 503 933 MS/MS spectra was generated (see

Supplementary Method for details of the data) and were searched

against the translated genome (NC_018143.2) under the same

Table 1. The probabilities and their estimates used in this article

Identification type True positive False positive

Annotated identification PðIannjT;X > xÞ ¼ h PðIannjF;X > xÞ ¼ l=6
Novel identification PðInewjT;X > xÞ ¼ 1� h PðInewjF;X > xÞ ¼ ð6� lÞ=6

Fig. 1. The upper and lower bounds of FDRnewðxÞ when FDRðxÞ ¼ 1%

Fig. 2. Simulation results on the E.coli and M.tuberculosis datasets. To simu-

late partial annotation, we randomly removed some annotated genes from

the database. Gene sampling was performed on the basis of h, with a step of

0.1 from 0 to 1, and in addition, 0.95 and 0.99 were also appended. (A) The ex-

perimental FDRnewðxÞ obtained on the E.coli dataset as shown by red crosses

fits well with the theoretical value (blue line). The deduced values for h were

approximately identical to the sampled ones, as shown by magenta triangles

on the diagonal line. (B) On the M.tuberculosis dataset, genes were sampled

10 times for each value of h. The experimental FDRnewðxÞ values as shown by

red boxes fit well with the theoretical values (blue line) when h is less than

0.9. As truly novel peptides may exist, the experimental FDRnewðxÞ diverges

from the theoretical counterpart. The experimental FDRnewðxÞ is 0.69 when

sampled h¼1, and the deduced h is 0.996 correspondingly. However, all

deduced values for h still match the sampled ones (green box), since the an-

notation completeness ratio is very close to 1.
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parameter setting as for E.coli. The search resulted in 28 545 target

peptides identified, including 682 contaminant ones, 27 528 anno-

tated ones and 335 novel ones. Meanwhile, a total of 230 novel

decoys were obtained above the peptide-level FDR of 1%, leading to

an experimental FDRnewðxÞ of 0.69 (¼230/335) and a deduced h of

0.996, which was calculated through Equation (3). The disparity be-

tween the numbers of novel targets and decoys implies that a set of

truly novel peptides may exist in M.tuberculosis. We performed a

blast search for the 105 (¼335�230) top-scoring novel peptides

and found that 68 of them have been annotated in other mycobac-

terial species, meaning that they are conservative and reliable. The

rest of them should be experimentally validated through further

efforts.

The same simulation experiment of h as done on E.coli was also

tested on M.tuberculosis. The deduced values of h are in line with

the theoretical ones on differently sampled h, as shown in Figure 2B.

The experimental FDRnewðxÞ also fits well with the theoretical coun-

terpart for smaller h. However, the experimental FDRnewðxÞ appar-

ently deviates from its theoretical value when h�0.95, because of

the existence of truly novel peptides. This result shows that

M.tuberculosis is not so completely annotated as E.coli, and FDRnew

ðxÞ is sensitive to the incomplete annotation, even when h
approaches 1.

In some previous researches, a filter of protein length is applied

to the translated database. To test the influence of this operation on

our model, we used four length filters of 30, 50, 100 and 500 to

modify the original translated database of M.tuberculosis. The

search results upon these four modified databases show that, a small

length filter (�100) causes minor effect on the theoretical estimation

of FDRnewðxÞ and the deduced h calculated by Equation (3).

However, a large filter such as 500, which removes 80% of anno-

tated genes in M.tuberculosis, greatly shrinks the sample space of

novel peptides and biases the estimation. In this situation, Equation

(3) should be modified to fit the experimental data consequently

(Supplementary Fig. S2). Therefore, to appropriately use the

estimation in Equation (3), a suitable length filter (e.g.�100) is

necessary.

4 Discussions

Above, we have assumed that the annotated and novel peptides dis-

tribute equally in the expressed and unexpressed proteins. Since not

all proteins are expressed in a specific sample under a specific condi-

tion, estimation of PðIkjT;X > xÞ becomes harder. In fact, novel

peptides in nearly completely annotated organisms may have lower

expression levels or worse scores, because more abundant and better

scoring peptides are easier to annotate, and accordingly, PðInewjT;X
> xÞ is smaller. This can lead to a larger FDRnewðxÞ and hence less

credible novel peptide identifications.

The peptide variants resulted from DNA mutation or mRNA al-

ternative splicing are sometimes also considered as novel peptides.

However, these variants are much like protein modifications, the

sample space of which is difficult to estimate explicitly. Definitely,

great care should be taken when reporting these variants, because

the search space of these peptides become even larger, and according

to Fu’s (2012) corollary, more false positives will appear if a global

FDR is used.

In this article, we have revealed that the genome annotation

completeness ratio is the dominant factor influencing the identifica-

tion accuracy of novel peptides identified by 6-ORF translation

search when a global FDR is used for quality assessment. The sub-

group FDR of novel peptides will be seriously under-estimated if the

genome has been well annotated (e.g. when the annotation com-

pleteness ratio exceeds 90%). For such well-annotated genomes,

separate FDR control is very necessary as recently suggested by

Nesvizhskii (2014).

However, with a stringent FDR control (e.g. 1%), many low

scoring but true peptide identifications may be excluded along with

false positives. To increase the sensitivity and specificity of novel-

gene discovery, one should reduce the size of searched database as

much as possible (Nesvizhskii, 2014). For example, when the tran-

scriptome information (especially from the strand-specific cDNA-

seq data) is available, it is apparently more favorable to search

against the transcriptome as well than to search against the genome

alone. If the transcriptome information is unavailable, it would be

also helpful to reduce the 6-OFR translation database by removing

sequences that are predicted to be hardly possible to be real proteins.

From the point of view of data analysis, we believe that intelligent

post-processing of search results is a promising resolution to sensi-

tive discovery of novel peptides and genes. For example, machine

learning techniques (Kall et al., 2007) can be used to discriminate

true and false identifications of novel peptides and to re-score and

re-rank the peptides using specific information in proteogenomics.

Alternatively, the search results from multiple search engines can be

combined properly to generate a set of reliable identifications

(Kelkar et al., 2011).
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