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Identification of proteins and their modifications via liquid
chromatography-tandem mass spectrometry is an impor-
tant task for the field of proteomics. However, because
of the complexity of tandem mass spectra, the majority of
the spectra cannot be identified. The presence of unan-
ticipated protein modifications is among the major rea-
sons for the low spectral identification rate. The conven-
tional database search approach to protein identification
has inherent difficulties in comprehensive detection of
protein modifications. In recent years, increasing efforts
have been devoted to developing unrestrictive ap-
proaches to modification identification, but they often suf-
fer from their lack of speed. This paper presents a statis-
tical algorithm named DeltAMT (Delta Accurate Mass and
Time) for fast detection of abundant protein modifications
from tandem mass spectra with high-accuracy precursor
masses. The algorithm is based on the fact that the mod-
ified and unmodified versions of a peptide are usually
present simultaneously in a sample and their spectra are
correlated with each other in precursor masses and re-
tention times. By representing each pair of spectra as a
delta mass and time vector, bivariate Gaussian mixture
models are used to detect modification-related spectral
pairs. Unlike previous approaches to unrestrictive modi-
fication identification that mainly rely upon the fragment
information and the mass dimension in liquid chromatog-
raphy-tandem mass spectrometry, the proposed algo-
rithm makes the most of precursor information. Thus, it
is highly efficient while being accurate and sensitive. On
two published data sets, the algorithm effectively de-
tected various modifications and other interesting events,
yielding deep insights into the data. Based on these dis-
coveries, the spectral identification rates were signifi-
cantly increased and many modified peptides were
identified. Molecular & Cellular Proteomics 10: 10.1074/
mcp.M110.000455, 1–15, 2011.

Liquid chromatography coupled with tandem mass spec-
trometry (LC-MS/MS)1 is currently the predominant technol-
ogy used to identify proteins and their modifications (1–3). The
most successful approach for interpreting tandem mass
spectra involves searching the database of known protein
sequences (4–9). Other approaches include the database-
independent de novo peptide sequencing (10–13) and the
hybrid sequence tag-based approach (14–16). However, in a
typical shotgun proteomics experiment, only �10–30% of the
tandem mass spectra can be successfully identified, and the
remaining majority is discarded (17). Many factors contribute
to the complexity of protein digests and the low identification
rate of tandem mass spectra (18). Understanding the origin
and identity of the unidentified spectra is of great importance
in expanding our knowledge about biological systems and
sample processing protocols. Nesvizhskii et al. (19) have
shown that by properly mining the unidentified spectra, in-
sights can be gained that are of interest to biologists, such as
identification of post-translational modifications, sequence
polymorphisms, and novel peptides. The presence of unan-
ticipated protein modifications being a crucial reason for the
low spectral identification rate has been demonstrated by
many studies (20–22). A recent study of human proteome
samples estimated that there are 8–12 modified versions for
each unmodified tryptic peptide (23). Efficient and compre-
hensive detection of protein modifications has become one of
the most important and challenging problems in MS/MS-
based proteomics.

Conventional database search engines for protein identifi-
cation, e.g. SEQUEST (4), were originally designed to identify
unmodified peptides. To identify peptides with dynamic mod-
ifications, the search mode that allows variable modifications
was introduced by Yates et al. (24, 25), in which a list of
variable modifications are specified by the user and all pos-
sible forms of modified peptides are exhaustively enumerated
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so-called restrictive approach to modification identification,
which has been very successful in identifying proteins with
limited modifications and has greatly accelerated the devel-
opment of proteomics in the past decade. However, as the
research focus of the field shifts from identification of protein
sequences to characterization of protein modifications, the
restrictive approach begins to show problems. For instance,
unless protein enrichment is conducted for certain targeted
modifications, it is difficult to guess which types of modifica-
tions are actually present in a sample. In most cases, oxida-
tion of methionine is the only additional variable modification
specified for database searches. On the other hand, consid-
ering a large number of variable modifications simultaneously
in a search exponentially increases the number of candidate
peptides, and thus dramatically degrades the search speed
and raises the level of random matches. As of November 22,
2010, there are 660 entries for known modifications in the
Unimod database (26). However, for the reason above, pop-
ular search engines such as SEQUEST (4) and Mascot (5)
allow no more than ten variable modification types in one
search.

To alleviate the exponential explosion problem of restrictive
modification identification, an approach involving iterative da-
tabase searches was proposed (27, 28). In this approach, a
basic search is first performed against the whole protein
database of interest with as few variable modifications spec-
ified as possible. Then, a refinement search considering an
extensive list of variable modifications is performed against a
much smaller database that consists of proteins identified by
the basic search. Using this strategy, the search speed and
the number of allowed modifications increase considerably.
However, if a protein fails to be identified in the basic search,
its potential modifications will be missed. More importantly,
this approach still requires the user to specify a list of modi-
fications. Modifications not included in this list, e.g. novel
ones, cannot be detected.

To overcome the above shortcomings of restrictive modifi-
cation identification, various unrestrictive approaches have
been devised in recent years. The most straightforward ap-
proach is the modification-tolerant database search, in which
all peptides in a database, rather than only the ones matching
the observed precursor mass, are compared with the input
spectrum, and putative modifications are introduced to ac-
count for the offset of precursor masses. The algorithms or
tools belonging to this approach include MS-alignment (20,
29, 30), Protein Prospector (22, 31), P-Mod (32), Interrogator
(33), TwinPeaks (34), SeMoP (35), and PTMap (36). Obviously,
because removal of the restriction on precursor masses
greatly enlarges the search space, this approach is generally
applicable to very small databases.

Another unrestrictive approach is based on sequence tags.
With this approach, a partial sequence of a possibly modified
peptide is first recovered by de novo sequencing. Then, the
partial sequence is used as a tag to locate the full peptide

sequence. Finally, one or more unanticipated modifications
may be inferred according to the remaining mass difference
between the full peptide sequence and the observed species.
Examples of this approach include OpenSea (37), SPIDER
(38), MODi (39), UStag (40), and the Point process model (41).
Although this approach is very promising, its applicability is
limited because it completely relies on the accuracy of se-
quence tags, which in turn rely on the quality of spectra.
Indeed, de novo sequencing still has limited capabilities and is
not as practical as the conventional database search
approach.

The third unrestrictive approach is spectral matching, i.e.
spectral clustering or library search. This approach takes ad-
vantage of the important fact that the modified and unmodi-
fied versions of the same peptide often exist simultaneously in
a protein sample (21). Although the mass spectra produced
by the modified and unmodified versions are different, they
are often similar to each other, especially when the peak shifts
caused by the modification are taken into account. The Spec-
tral-Networks algorithm of Bandeira et al. (42, 43) uses spec-
tral alignment (29) to detect spectral pairs produced from
unmodified and modified versions of peptides. These spectral
pairs are then constructed into networks of related spectra,
from which more informative virtual spectra can be generated
to facilitate de novo peptide sequencing, and also unantici-
pated modifications can be identified by propagation of da-
tabase search results. Similarly, the Bonanza algorithm of
Falkner et al. (44) uses an improved version of the common
spectral-dot-product similarity with shifted mass matching
window to cluster related spectral pairs. Ahrne et al. (45)
proposed to construct an online library of spectra confidently
identified by sequence database search and subsequently
search the remaining unidentified spectra against the spectral
library with a very large precursor mass tolerance. However,
the library search tool that they used, SpectraST (46), was not
designed for this open search mode, and thus its ability to
identify unanticipated modifications was limited. Recently, Ye
et al. (47) reported a deliberate open library search tool,
pMatch, which took into account several factors to tolerate
unanticipated modifications and showed much better per-
formance than SpectraST.

Although the above approaches to unrestrictive modifica-
tion identification are attractive and useful, they have two
disadvantages. First, they involve open search or matching of
the fragmentation spectra and are thus computationally ex-
pensive. Moreover, their performances greatly depend on the
quality of fragmentation spectra. Some modifications, how-
ever, can significantly change the fragmentation patterns of
peptide ions, resulting in spectra that are either of low quality
or very different from those of unmodified peptides. For ex-
ample, phosphorylated peptides often undergo insufficient
backbone fragmentation under collision-induced disassocia-
tion, resulting in spectra dominated by neutral-loss peaks of
precursors. Second, the above approaches completely ignore
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the retention time information provided by LC-MS/MS. The
retention time of a peptide is mainly determined by the hy-
drophobicity of the peptide and thus has discriminative power
in peptide identification. Smith et al. have shown that it is
feasible to identify peptides directly using their accurate mass
and time (AMT) tags (48, 49). For most modifications, the
modified peptides tend to consistently elute earlier or later
from LC columns than do their unmodified counterparts.
Therefore, the retention time shift caused by a modification
can serve as orthogonal evidence for the occurrence of this
modification (21).

In this paper, we present a statistical algorithm named
DeltAMT (Delta Accurate Mass and Time) for efficient detec-
tion of abundant modifications by taking full advantage of the
precursor information from LC-MS/MS with high precursor
mass accuracy. The algorithm aims at finding pairs of modi-
fication-related spectra and thus might be classified into the
spectral matching approach. However, the fragmentation
spectra are never matched with each other. Therefore, mod-
ifications can be detected with an extremely fast speed. The
underlying principle of DeltAMT is based on the simple fact
that an abundantly present modification in a sample usually
leads to observation of many spectral pairs with nearly iden-
tical precursor mass differences and similar retention time
distances. The main steps of DeltAMT are as follows. First,
each pair of spectra from an LC-MS/MS run is represented by
a vector, called a delta mass and time vector, with two di-
mensions being the differences in precursor mass and reten-
tion time, respectively. Then, bivariate Gaussian mixture mod-
els are fitted to the complete set of observed delta vectors.
Fitted distribution components are scored to discriminate
modification-induced distributions from random ones. Finally,
putative modifications are reported with the estimated mass
and retention time shifts as well as modification-related spec-
tral pairs. To identify the modified peptides, the modifications
detected by DeltAMT can be included into sequence data-
base search as variable modification parameters. Alterna-
tively, peptide identifications obtained in some way can be
propagated among the modification-related spectral pairs.

Previous algorithms that are most closely related to ours are
the ModifiComb and the Mass Distance Fingerprint (MDF)
algorithms. The ModifiComb algorithm of Savitski et al. (21)
pioneered the use of retention time as complementary infor-
mation to detect modifications. However, ModifiComb builds
histograms of differences in precursor masses and retention
times between detected similar spectral pairs only, rather than
simply between all possible pairs of spectra as is done in
DeltAMT. It is featured in the combined use of two comple-
mentary fragmentation modes and post-processing of data to
produce semi-interpreted fragmentation spectra (peaks with
inferred fragment ion types). In addition, ModifiComb deter-
mines spectral pairs empirically instead of using a statistical
framework. The MDF algorithm proposed by Potthast et al.
(50) is a close analog of DeltAMT but it makes use of the

precursor mass information only, hence limiting the accuracy
and sensitivity of modification detection. Moreover, MDF does
not address the pseudo-modification problem associated
with unrestrictive modification identification algorithms (20,
43). Consequently, many reported mass shifts could not be
properly interpreted. For example, the mysterious 25.0252 Da
that was repeatedly detected by MDF was simply a pseudo-
modification corresponding to the combination of oxidation
(15.9949 Da) and ICAT label (9.0302 Da). Most other unknown
modifications reported by MDF (50) can be interpreted in the
same fashion.

Unlike previous methods for unrestrictive modification iden-
tification, which are based on the fragment information and
the mass dimension in LC-MS/MS, the DeltAMT algorithm
presented in this paper is the first attempt to make full use of
the precursor information in a rigorous statistical framework to
rapidly and accurately detect abundant modifications present
in a protein sample. Although the algorithm is not designed to
detect low-abundance modifications, it should be noted that
even for methods using fragmentation data, it is usually the
abundant modifications that are accepted as confident results
(20–22). Compared with previous approaches for modifica-
tion detection, DeltAMT possesses several advantages. First,
it is very fast, thus able to overcome the speed bottleneck
encountered by previous methods. To analyze the mass
spectra from one LC-MS/MS run, it only takes DeltAMT sev-
eral minutes to complete the entire process from reading raw
data to reporting putative modifications. Unwanted chemical
modifications or contaminants introduced by sample pro-
cessing can be rapidly reported, providing real-time measure-
ments of the quality of experiments. Second, a unique feature
of DeltAMT is that it is not sensitive to the quality of fragmen-
tation spectra. It is known that modified peptides often have
complex fragmentation patterns, but DeltAMT is naturally im-
mune to this problem. Third, the use of retention time provides
an independent source of evidence for the detected modifi-
cations. Two dimensions are more discriminative than one in
detecting modification-related spectral pairs. Fourth, because
the mass differences are computed between experimental
precursor masses, the estimated modification masses are not
sensitive to systematic mass errors of mass spectrometers.
Finally, the problem of pseudo-modifications is, for the first
time, carefully addressed.

On a standard protein data set and a proteome quantifica-
tion data set, our method successfully detected many chem-
ical modifications, metal adducts, isotope labels, as well as
nonspecific digestion and even nonpeptide contaminants,
yielding deep insights into the data. By incorporating these
discoveries into database search or performing peptide prop-
agation among detected spectral pairs, the spectral identifi-
cation rates were significantly increased, and many modified
peptides were identified.
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MATERIALS AND METHODS

The flowchart of the DeltAMT algorithm for detection and identifi-
cation of protein modifications is illustrated in Fig. 1 Details of each
step are described below.

Delta Mass and Time Vectors (�)—For most modifications, the
modified and unmodified versions of a peptide often exist simultane-
ously. A modification abundantly present in a sample will lead to many
mass spectral pairs, with their precursor masses differing by the
modification mass. In addition to peptide masses, peptide retention
times provide another dimension of information available in LC-
MS/MS experiments. The modified and unmodified versions of a
peptide share the same amino acid sequence and differ by a modi-
fication group. Thus, they often exhibit slight difference in physico-
chemical properties and LC behavior. A modification usually has a
relatively consistent effect on the retention times of peptides carrying
it. For example, it is known that peptides containing oxidized methio-
nine(s) usually elute earlier (51, 52), whereas deamidation of aspara-
gine tends to slightly increase the retention time of peptides (21, 53)
on reversed-phase high performance LC. Therefore, the retention
time is an orthogonal source of evidence for the existence of a
modification. To detect potential modifications in a data set of tandem
mass spectra with the DeltAMT algorithm, every pair of spectra is
represented by a two-dimensional vector, called a delta mass and
time vector or delta vector for short (denoted by �):

� � ��m,�t�, (Eq. 1)

where �m and �t represent the differences in precursor mass and
retention time between the two spectra, respectively. A high-fre-
quency �m value accompanied by a concentrated �t indicates a
potential modification. The aim of DeltAMT is to find all such �m
values by statistical analysis of the empirical distribution of �.

In tandem mass spectrometry, abundant peptides can produce
many copies of spectra, resulting in data redundancy. There are two
main disadvantages of spectral redundancy in our situation. First,
spectral redundancy brings a high computational burden, because
the number of calculated � instances increases quadratically with the
number of spectra. Second and no less important, spectral redun-
dancy may cause an unexpected effect on the distribution of �. To

mitigate the problems arising from spectral redundancy, we utilize a
simple strategy for efficiency consideration. Among the spectra with
precursor masses in close proximity, e.g. less than 5 ppm for Fourier
transform mass spectrometers, the one with the median retention
time is reserved as the representative. Although such a simple pro-
cessing step may remove some nonredundant spectra, we find that a
representative subset of spectra is sufficient to reveal the dominant
modifications. Moreover, when we reach the spectral pair detection
step, all spectra will be considered.

Another important issue associated with high-resolution mass
spectrometers is the determination of accurate precursor masses. In
tandem mass spectrometry, the measured precursor masses are
prone to errors, such as misidentified mono-isotopic peaks. Identify-
ing the mono-isotopic peak in a weak ion cluster of a large peptide or
within overlapping ion clusters has remained a basic and not very
well-resolved problem of mass spectrometry. However, as a statisti-
cal algorithm, DeltAMT computes from a large number of data points
and can tolerate a certain degree of random data errors. The precur-
sor masses used in this paper were directly exported by the instru-
ment control software. Though DeltAMT will benefit from a better
third-party peak-picking algorithm, e.g. MaxQuant (54), we did not
employ such an algorithm here for the purpose of simplicity, inde-
pendence and efficiency.

Random and Modification-induced Distributions of �—All in-
stances of � can be categorized into two groups: random and mod-
ification-induced. A random instance of � is derived from two spectra
that are produced from two independent peptides. A modification-
induced instance of �, as its name implies, results from two modifi-
cation-related spectra that are produced by two peptides with the
same sequence but different modification states.

In the vicinity (about �0.5 Da) of a modification mass, the distri-
bution of � is assumed to be a mixture of multiple components, one
of which is produced by random spectral pairs and the others by
modification-related spectral pairs. The probability density function
(pdf) of � is

f��� � �RandfRand ��� � �
k�1

n

�Mod,kfMod,k ��� (Eq. 2)

�Rand � �
k�1

n

�Mod,k � 1, (Eq. 3)

where fRand ��� represents the pdf of the random distribution in this
mass interval, fMod,k ��� represents the pdf of the k-th modification-
induced distribution, n is the total number of modifications in this
mass interval, and �Rand and �Mod,k are mixing coefficients. We further
assume that both the random distribution and the modification-in-
duced distributions are Gaussian. That is, both fRand ��� and fMod,k ���
are of the form

f����,	� �
1

2��	�1/ 2e



1
2��
��T	
1��
��, (Eq. 4)

where parameters � and 	 denote the mean and covariance of the
Gaussian distribution, respectively. The reasons for the choice of the
Gaussian Mixture Model are twofold: Gaussian Mixture Model can be
efficiently estimated using the Expectation-Maximization algorithm,
and the real data illustrate good fitness to the model. Fig. 2 presents
a real example of the distribution of � obtained on the ISB standard
protein mix data set (see the Results section for details). We can see
that there are two modification-induced distributions (n � 2) of � in
the mass interval from 15.5 to 16.5 Da, one of which is induced by the
oxidation modification and the other by a subtractive pseudo-modi-

FIG. 1. Flowchart of the DeltAMT algorithm (dotted lines indi-
cate optional steps).
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fication. There are occasionally such cases, as described here, in
which more than one modification exists within a small mass interval.
Another example is the combination of deamidation (0.98402 Da) and
precursor isotope (1.0072 Da). These mass-alike modifications can be
better discriminated from each other from the retention time dimen-
sion, as illustrated by Fig. 2.

After the random and modification-induced distributions of � are
estimated, modification-related spectral pairs can be identified at a
required confidence level. Given the observed � from a pair of spec-
tra, the posterior probability of this spectral pair being related by the
k-th modification is

Pr�Modk��� �
p���Modk�Pr�Modk�

p���Rand�Pr�Rand� � �
j�1

n

p���Modj�Pr�Modj�

(Eq. 5)

�
�Mod,kfMod,k���

�RandfRand ��� � �
j�1

n

�Mod, jfMod, j���

Then, the posterior error probability (PEP) is (1 - Pr(Modk��)). Given a
cut-off for PEP, a list of modified/unmodified spectral pairs can be
obtained for each modification detected.

Scoring Modification-induced Distributions of �—To evaluate the
reliability of a distribution component as being modification-induced,
a scoring function, named density score (D-score), is defined as

D-scorek � �Mod,k

�Rand
m �Rand

t

�Mod,k
m �Mod,k

t , (Eq. 6)

where �Mod,k is the mixing coefficient of the k-th modification-induced
component in the mixture distribution, �Mod,k

m and �Mod,k
t are the standard

deviations of the �m and �t elements of the k-th modification-induced
component, respectively, and �Rand

m and �Rand
t are the standard devia-

tions of the �m and �t elements of the random distribution component,
respectively. D-score indicates that the more samples a distribution
component contains and the more compact the distribution is, the more
likely this distribution component is induced by a modification.

The estimation of the mixture model is performed in an iterative
manner. When the D-score of a modification-induced distribution
component is below a cut-off value, this component is removed from

the mixture model and the model is re-estimated. This is repeated
until the D-scores of all remaining modification-induced components
are no less than the cut-off value or no modification-induced com-
ponents are left. The cut-off value for D-score controls the trade-off
between the accuracy and the sensitivity of modification detection. A
low cut-off value increases the sensitivity but also increases the level
of false positives. According to our experience, 10 is an appropriate
cut-off value that can lead to interpretable modifications and reliable
spectral pairs. If interested in lower-abundance modifications, one
can use lower cut-off values, but this may necessitate the use of
additional procedures to verify the findings.

Selection of Potential Modification Mass Intervals—In principle, the
above procedure of distribution estimation should be performed on
every potential modification mass interval, which is defined as a 1-Da
window around each nominal mass value. However, for general pro-
tein samples, only a few mass intervals are expected to contain
modification masses. To avoid unnecessary computation, it is desir-
able to select a few potential modification mass intervals that are
likely to contain modifications. We use a simple method here to
accomplish this purpose. The random �m within each potential mod-
ification mass interval is assumed to come from a Gaussian distribu-
tion, which is estimated based on the observed �m data points. If any
values of �m are observed with frequencies significantly exceeding
their estimated random probabilities, then the mass intervals contain-
ing these values are considered to contain potential modifications and
are subjected to the two-dimensional mixture distribution estimation
of �. This is illustrated by Fig. 3. A parameter R�m � o��m�/e��m� is
calculated for �m to quantify the extent to which the observed fre-
quency of �m exceeds its expected random probability, where o��m�
and e��m� are the occurrence number of �m and the number of �m
expected by chance, respectively. The mass bin size used is 0.01 Da
by default. According to our experience, a value of 1.3 for R�m can
serve as a good cut-off for removing unproductive mass intervals
without losing sensitivity.

Recognition of Additive and Subtractive Pseudo-modifications—
Some pseudo-modifications may be reported by DeltAMT as com-
putational products of real modifications (mono-modifications). There
are two possible types of such pseudo-modifications. The first one is
produced by the combination of two modifications and is, therefore,
called additive pseudo-modification. For example, many spectra car-
rying two modifications B and C may lead to reporting a modification
A with a mass shift corresponding to the sum of the mass shifts of
modifications B and C. The second type of pseudo-modification is
produced by the difference between two modifications and is, there-

FIG. 2. An example of the distribution of � obtained from the ISB standard protein mix data set. In this example, three distribution
components were automatically detected by the DeltAMT algorithm. One of them is the random distribution marked by the large dashed square,
and the other two are modification-induced distributions marked by the small solid squares. The two modifications are oxidation (right) and the
(calcium - sodium) subtractive pseudo-modification (left). These two modifications are well discriminated from each other by the mass and time
dimensions.
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fore, called subtractive pseudo-modification. For example, two
groups of spectra carrying modifications A and B, respectively, may
lead to reporting a modification C with a mass shift corresponding to
the mass difference between modifications A and B. Although addi-
tive and subtractive pseudo-modifications are not real independent
modifications, they are useful for recognizing modification-related
spectral pairs and identifying peptides with multiple modifications.

To recognize these two types of pseudo-modifications, three cri-
teria are used:

(1) The masses must be consistent; i.e. �mA � �mB � �mC, where
�m denotes the estimated mass shift caused by the putative modi-
fication A, B, or C.

(2) The retention times must be consistent; i.e. �tA � �tB � �tC,
where �t denotes the estimated retention time shift caused by the
putative modification A, B, or C.

(3) The detected spectral pairs must be consistent. Specifically, the
following criteria are used:

�
�PBAC�/�PB� � �PCAB�/�PC� � T1, if B is a differential

pseudo-modification of A and C
�PCAB�/�PC� � �PBAC�/�PB� � T1, if C is a differential

pseudo-modification of A and B
�PCAB�/�PC� � �PBAC�/�PB� � T2, if A is a combinatorial

pseudo-modification of B and C

,

where �P� denotes the number of elements in set P, T1 and T2 are two
thresholds, and

PB � ��si,sj��Pr�ModB��ij� � PEPT�
SB1 � �si�?sj,�si,sj� � PB�
PBAC � ��si,sj���si,sj� � PB,si � SA1,sj � SC1�
PCAB � ��si,sj���si,sj� � PC,si � SA1,sj � SB1�

, (Eq. 7)

and so forth. The (si, sj) in the above formulae denotes spectral pairs
and PEPT denotes the threshold of PEP. Simply put, PB is the set of
spectral pairs related by the putative modification B, and SB1 is the set
of spectra with modification B in PB. The other set symbols are
defined by analogy. PBAC is a subset of PB consisting of the spectral
pairs, in which the spectra with modification B also belong to PA, and
spectra without modification B also belong to PC. PCAB is defined in
a similar way. If PBAC is relatively larger enough than PCAB, B is
recognized as the subtractive pseudo-modification of A and C, and
vice versa. Otherwise, if both are large enough, A is recognized as the
additive pseudo-modification of B and C.

Identification of Modified Peptides—A straightforward way to make
use of the modification detection results is to incorporate the de-
tected modification types into ordinary sequence database search.
Alternatively, peptides identified by database search or other ap-
proaches (e.g. de novo sequencing) can be propagated from the
modification-free spectra to the modification-containing spectra
based on the detected spectral pairs (43). If the spectra are of good

qualities and the amino acid specificities of the detected modifica-
tions are known, incorporation of these modifications into sequence
database search will be appropriate. Otherwise, peptide propagation
may be advantageous. It is known that some modifications, e.g.
phosphorylation, suppress peptide fragmentation, resulting in mass
spectra with low signal-to-noise ratios. Moreover, for novel modifica-
tions, peptide propagation helps determine their amino acid specific-
ities. To locate the modification site of a propagated peptide, the
modification is assigned to each amino acid in the peptide, and
theoretical spectra are predicted for all assignments and are scored
by comparison with the experimental spectrum. The highest-scoring
site is considered the modification site. The scoring function used
here is the one employed by the pFind search engine (7). Obviously,
the accuracy of peptide propagation relies on both the accuracy of
input peptide identifications and the reliability of detected spectral
pairs. Moreover, modification site assignment is especially difficult for
spectra of low qualities. Therefore, the propagation results should be
carefully validated. In propagation, two kinds of conflicts may occur.
The first is called edge conflict, in which the two spectra S1 and S2 in
a spectral pair (S1,S2) are identified as different peptide sequences.
The second is called node conflict, in which the two spectra S1 and
S2 in two spectral pairs (S1,S3) and (S2,S3) are identified as different
peptide sequences. In any case, such spectral pairs are removed.

Inference of Modification Types—For mass spectra produced from
current popular hybrid instruments (e.g. LTQ-FT or LTQ-Orbitrap), the
accuracy of precursor masses is at the ppm level. From such data,
even higher accuracy for modification masses can be estimated by
DeltAMT. This is because of several reasons. First, the mass shift
caused by a modification is estimated from many pairs of spectra
rather than one pair of spectra. Second, the estimation is less biased
by the systematic error of a mass spectrometer, because it is the
mass differences instead of the original mass values that are used.
Third, the retention time shift as the second dimension of the distri-
bution of � can exclude a substantial number of random spectral
pairs. With accurate modification masses, the identities of most mod-
ifications can be easily determined by searching a modification da-
tabase such as Unimod. The estimated retention time shift also helps
infer modification types. Different modifications have different effects
on the retention time of a peptide. Additionally, amino acid specificity
of a modification as revealed by modification site location is also
useful. However, fully automated inference of modification types is
hardly realistic, so manual examination is necessary. Expertise and a
priori knowledge about the source of the protein sample and the
sample processing procedure are always important, particularly for
novel modifications.

RESULTS

To validate the DeltAMT algorithm, two published data sets
of tandem mass spectra were analyzed, with detailed discus-
sions focused on the first data set. For each data set, putative

FIG. 3. An example of the distribu-
tion of �m. Within each potential mod-
ification mass interval, random �m is
assumed to come from a Gaussian dis-
tribution. Those mass intervals that con-
tain �m values of unexpectedly high fre-
quencies (peaks marked by stars) are
selected and subjected to two-dimen-
sional (mass and time) distribution fitting
for modification detection. In this exam-
ple, the highest peak corresponds to a
real modification (acetaldehyde), and the
other three are random signals.
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modifications (mass and time shifts) and related spectral pairs
were detected by the DeltAMT algorithm. The detected mod-
ifications were interpreted according to their mass and reten-
tion time shifts as well as their locations on peptides. To
identify the peptides carrying these modifications, both data-
base search and peptide propagation were performed. The
MS-Alignment algorithm was also run on the first data set and
compared with DeltAMT in terms of speed and sensitivity. All
data analyses were performed on a personal computer with a
1.8 GHz Intel Core 2 Duo CPU, 2 GB of main memory and the
Windows XP operating system.

Software Implementation—The DeltAMT algorithm was im-
plemented in MATLAB and C independently (software
accessible at http://pfind.ict.ac.cn/pcluster/). The analysis re-
sults presented in this paper were obtained with the MATLAB
version. The software can directly read the tandem mass
spectra in the RAW format from mass spectrometers of
Thermo Scientific Corporation (e.g. LTQ-FT/Orbitrap). It also
supports data in the DTA format, in which case the scan
numbers in file names are used as the substitute for retention
times. After all parameters needed by DeltAMT are specified
(default values are provided which can be kept unchanged in
general use), the software can be executed in a fully auto-
mated manner.

Data

One data set used is the ISB standard protein mix data set,
a standard protein data set from the Institute for Systems
Biology (55), and the other is the MaxQaunt HeLa Proteome
data set, a stable isotope labeling with amino acids in cell
culture (SILAC)-treated HeLa proteome data set from the
Max-Planck Institute for Biochemistry (56). Both data sets are
of good quality and are available in the public domain.

ISB Standard Protein Mix Data Set—This data set is cur-
rently the largest and most diverse mass spectra data set
deliberately designed for the purpose of testing peptide and
protein identification software tools (55). Eighteen purified
proteins were mixed and digested by trypsin into peptide
mixtures, which were then analyzed by LC-MS/MS on diverse
mass spectrometers and under various conditions. The anal-
ysis of Mixture 3 on a Thermo Scientific LTQ-FT mass spec-
trometer consisted of 10 LC-MS/MS runs. One of these runs
(B06–11073), consisting of a total of 4085 MS/MS scans, was
selected at random for detailed analysis in this paper. This
data set was downloaded at http://regis-web.systemsbiology.
net/PublicData sets/.

MaxQuant HeLa Proteome Data Set—This data set was
originally published in (56) and was used for testing the Max-
Quant program (54). Proteins from SILAC-treated stimulated
HeLa cells were digested with trypsin. The resulting peptides
were separated, purified, and analyzed by LC-MS/MS in trip-
licate on a Thermo Scientific LTQ-Orbitrap mass spectrome-
ter. A total of 72 LC-MS/MS runs were performed. One of

these runs (20070522_NH_Orbi2_HelaEpo_10), consisting of
a total of 13,572 MS/MS scans, was selected at random for
the use in this paper. This data set was downloaded from
Tranche at http://tranche.proteomecommons.org/.

Both data sets were in the Thermo Scientific RAW data
format, and the precursor information was directly extracted
from the RAW files. Note that although we selected only one
LC-MS/MS run for each data set, similar results were ob-
tained for other runs (data not shown). For the ISB standard
protein mix data set, the other nine runs were used to esti-
mate the variability of the DeltAMT algorithm.

Results for the ISB Standard Protein Mix Data Set

Overview—The spectra in the ISB standard protein mix data
set were analyzed with the DeltAMT algorithm. Following the
removal of data redundancy, delta mass and time vectors
were calculated for 2619 MS/MS spectra, and these vectors
were subjected to mass interval selection and mixture distri-
bution estimation. As a result, a total of 32 putative modifica-
tions with D-scores above 10 were reported, among which 13
were mono-modifications, six were additive pseudo-modifi-
cations and 13 were subtractive pseudo-modifications. Table
I gives their estimated mass shifts (�m) and retention time
shifts (�t), as well as their D-scores, numbers of spectral pairs,
interpretations, and deviations from theoretical masses. Here,
the mass and retention time shifts correspond to the esti-
mated means of modification-induced distributions of delta
vectors. The estimated standard deviations are given in
supplementary Table S1. Note that the numbers of spectral
pairs given in Table I contain redundancy, i.e. a spectrum may
appear in multiple pairs. The total number of spectral pairs,
thereby, may exceed the number of spectra. Larger D-scores
indicate higher confidence and usually correspond to more
spectral pairs. Normally, spectral pairs with PEP 	 0.02 were
reported. When no pairs were found at this level, lower PEP
thresholds, 0.05 and further 0.1, were used. Among the 32
reported modifications, 31 were successfully interpreted.
Their estimated mass values were very close to their theoret-
ical ones (mostly within 0.001 Da). For several putative mod-
ifications, e.g. carbamidomethyl dithiotreitol (DTT), oxidation,
dehydration and acetaldehyde, their spectral pairs could not
be detected at the lowest PEP level (0.02). This was because
the delta vector distributions induced by these modifications
had not stood out clearly enough from the random distribu-
tions, either because of their small mixing coefficients or large
variances. However, they were still distinguished by the Del-
tAMT algorithm and their distribution centers (the mass di-
mension at least) were accurately estimated. To examine the
variability of the algorithm with respect to replicate runs of the
same sample, we further analyzed the data from the other
nine LC-MS/MS runs in this data set and calculated the
means and standard deviations of the estimated mass and
time shifts for each putative modification. The results, given in
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supplementary Table S1, demonstrate the stability of DeltAMT
for different LC-MS/MS runs. The detected modifications
were incorporated into sequence database search. In parallel,
peptide propagation was also conducted based on the iden-
tifications from a basic database search without considering

any of the detected modifications. Both approaches identified
a substantial number of spectra of modified peptides (Table II
and supplementary Table S2), and the identifications made by
the two approaches showed good agreement with each other.
Table III gives the running times for each step of modification

TABLE I
Detected modifications for the ISB standard protein mix data set

Mono-modifications

�m (Da) �t (min) D-score Pairs (PEP) Interpretation Mass deviation (Da)

37.94689 0.020 1127.2 2,023 (0.02) Calcium adduct 
0.00005
21.98167 0.020 472.2 1,358 (0.02) Sodium adduct 
0.00027
113.08411 
0.012 151.2 48 (0.02) I/L (amino acid) 0.00005
0.98433 0.800 73.6 335 (0.02) Deamidation 0.00031
151.99699 1.842 34.2 125 (0.05) Carbamidomethyl DTT 0.00042
156.09987 
2.389 30.8 119 (0.05) R (amino acid) 
0.00124
128.09461 
2.915 29.9 144 (0.05) K (amino acid) 
0.00035
170.10512 
0.014 29.3 39 (0.05) GI/L or AV (amino acids) 
0.00040
104.09558 
13.108 20.2 6 (0.02) False positive
15.99421 
4.101 17.3 62 (0.05) Oxidation 
0.00071
99.06819 0.671 15.0 43 (0.10) V (amino acid) 
0.00022
18.00828 
0.255 13.6 36 (0.10) Dehydration/N-term pyro-glutamic acid 
0.00229
26.01532 2.581 10.5 67 (0.10) Acetaldehyde(26) 
0.00033

Additive pseudo-modifications

�m (Da) �t (min) D-score Pairs (PEP) Interpretation Mass deviation (Da)

43.96545 0.0717 207.2 194 (0.02) Double sodium 0.00156
75.89452 0.0340 175.4 185 (0.02) Double calcium 0.00063
59.93015 0.0206 169.1 278 (0.02) Calcium  sodium 0.00127
38.93119 0.8715 26.7 53 (0.05) Calcium  deamidation 0.00023
189.94359 1.3348 20.8 20 (0.05) Calcium  carbamidomethyl DTT 0.00008
22.96927 0.4303 18.2 3 (0.05) Sodium  deamidation 0.00331

Subtractive pseudo-modifications

�m (Da) �t (min) D-score Pairs (PEP) Interpretation Mass deviation (Da)

15.96596 0.0011 483.7 792 (0.02) Calcium 
 sodium 0.00096
6.01759 0.0217 232.8 165 (0.02) Double sodium 
 calcium 0.00064
53.91554 0.0444 111.1 116 (0.02) Double calcium 
 sodium 0.00360
31.93087 0.0031 110.0 41 (0.02) Double calcium 
 double sodium 0.00088
36.96257 
0.7860 47.3 34 (0.02) Calcium 
 deamidation 
0.00035
20.99921 
0.8399 27.7 73 (0.05) Sodium 
 deamidation 0.00187
118.15417 
2.4277 25.7 70 (0.05) R 
 calcium 0.00000
114.05048 2.3156 19.8 2 (0.05) Carbamidomethyl DTT 
 calcium 0.00085
90.14823 
2.8493 18.7 42 (0.05) K 
 calcium 0.00021
15.00951 
5.0909 16.7 28 (0.10) Oxidation 
 deamidation 
0.00107
140.10718 1.4453 14.5 26 (0.10) R 
 oxidation 0.00098
16.94414 0.9930 11.1 24 (0.10) Calcium  deamidation 
 sodium 
0.00514
21.95289 4.2442 10.5 98 (0.10) Calcium 
 oxidation 0.00087

TABLE II
Spectra identified by incorporation of the detected modifications into sequence database search and by peptide propagation among spectral
pairs with PEP 	 0.02 for the ISB standard protein mix data set. (*For each detected modification, the number of identified spectra is the number
of spectra identified as peptides with this modification; for semispecific digestion, it is the number of spectra identified as semitryptic peptides.)

Digestion
mode Considered modification

Number of spectra identified
as modified/semitryptic peptides*

Database search Propagation (PEP < 0.02)

Full-specific Calcium (D, E and peptide C-terminus) 142 488
Sodium (D, E and peptide C-terminus) 205 372
Deamidation (N and Q) 165 98
Carbamidomethyl DTT (C) 82 0
Dehydration (T, S, D, and E at peptide N-termimus) 14 0
Acetaldehyde (H, K and peptide N-termimus) 38 0

Semispecific None 218 14
Total 864 972
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detection and peptide propagation. From reading the raw
mass spectra to reporting the presence of putative modifica-
tions (mass and time shifts), the procedure took less than 4
min.

Database Search and Peptide Identification—To identify the
peptides carrying the detected modifications, all spectra were
searched using the pFind search engine (7, 57) against a yeast
protein sequence database concatenated with the sequences
of the 18 standard proteins and 82 contaminant proteins (15
suggested by the authors of the data, 53 from the cRAP
database, and 14 additional trypsin and keratin proteins ex-
tracted from the UniProt database). The yeast sequences
were added as background to produce meaningful scoring
statistics. To estimate the false discovery rate (FDR), the
database was searched in a target-decoy strategy (58), in
which the whole sequence database was reversed and com-
bined with the original database. The precursor and fragment
mass matching tolerances were �10 ppm and �0.5 Da, re-
spectively. Trypsin was used for in silico protein digestion,
and up to two missed cleavages were allowed. The modifica-
tion parameters were set as follows. In a basic search, cys-
teine carbamidomethylation was set as the fixed modification
and methionine oxidation was set as the only variable modi-
fication. In modification-oriented searches, each detected
modification was individually added as an additional variable
modification. We did not incorporate all modifications into a
single search in order to avoid combinatorial explosion of
search space and increasing level of random matches. A
maximum of six variable modifications per peptide were al-
lowed. Following each database search, highest-scoring pep-
tides were filtered by three criteria: 1% FDR at spectrum level,

2 to 6 ppm precursor mass deviation, and at least two
peptide identifications for each identified protein. For the ba-
sic database search, 1302 spectra were successfully identi-
fied. For the modification-oriented searches, 646 spectra of
peptides with detected modifications were identified. Table II
gives the numbers of spectra identified for each modification.
A search with semitryptic digestion was also performed, and
218 spectra of semitryptic peptides were identified. In total,
by incorporating the discoveries of DeltAMT into database
searches, the spectral identification rate was raised from 32%
to 53%. It can be expected that some spectra of multiply
modified peptides would be identified if all detected modifi-
cations as well as nonspecific digestion were taken into ac-
count in a single database search.

Based on the identifications by the basic database search
and the detected spectral pairs by DeltAMT, peptide propa-

gation was carried out. All of the peptides identified by the
basic database search came from either the eighteen stan-
dard proteins or contaminant proteins, and none from the
reversed or yeast protein sequences, demonstrating the high
confidence of these identifications. Identified peptides were
propagated among spectral pairs that were obtained at dif-
ferent PEP levels. Supplementary Table S2 gives the detailed
propagation results. In this paper, we focus on the results
obtained with PEP 	 0.02 only. With this level, a total of 1211
spectra that had not been identified by the basic database
search were successfully identified by peptide propagation.
During propagation, eight edge conflicts and seven node
conflicts occurred, and the involved spectral pairs were dis-
carded. The numbers of spectra identified as modified/semi-
tryptic peptides are listed in Table II for comparison with
database search results. It should be noted that because the
peptides identified by peptide propagation and those by mod-
ification-oriented database search had different error rates in
theory, the performance comparison of the two methods was
not absolutely fair. However, we found that the peptide as-
signments of the spectra identified by both methods were
perfectly consistent, demonstrating the accuracy of these
identifications. Further, Table II shows that calcium and so-
dium adducts were better identified by peptide propagation
(one reason may be because of the degraded spectrum qual-
ity of adducts). A more important role for peptide propagation
is that information about the specificity of a modification can
be revealed by locating the modification sites, and sometimes
this is indispensable for precise determination of the modifi-
cation identity or for performing database search. For exam-
ple, we observed that the �152 Da had been assigned to
carbamidomethylated cysteines in all cases, and we therefore
knew that it was in fact a modification of �209 Da.

Calcium and Sodium Adducts—The most dominant modi-
fication detected in this data set turned out to be from the
formation of calcium-peptide adducts. The estimated mass
shift caused by this modification is 37.94689 Da, differing by
only 0.00005 Da from the theoretical value of 37.94694 Da
(one calcium mass minus two hydrogen masses). Potassium
adduct formation would cause a very similar mass shift of
37.95588 Da, but the detected mass shift is nearly 0.01 Da
away from this theoretical value, well beyond the mass accu-
racy of LTQ-FT instruments as well as the average mass
accuracy of the detected modifications for this data set. Fig.
4 shows the scatter-histogram of delta vectors in the mass
interval containing this modification mass. We can see that
the �m values associated with this modification are so con-

TABLE III
Running times of modification detection and peptide propagation for the ISB standard protein mix data set

Modification detection Peptide propagation
Total

Reading raw data Reporting modifications Reporting spectral pairs Propagation Basic database search

0.3 min 3.4 min 1.4 min 5 min 9.7 min 19.8 min
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centrated that the standard deviation is only 0.0026 Da. Also,
this modification has almost no effect on peptide retention
times, which is a common characteristic of metal adducts,
because they are usually formed upon ionization and thus will
“coelute” with the unmodified peptides. Moreover, no molec-
ular formula composed of the C, H, N, O, and S elements
exists such that its molecular mass matches the observed
mass shift within a tolerance of 0.01 Da. Therefore, we
strongly believe that this modification is because of calcium
adduct formation, although it was rarely reported before. As
an example, supplementary Fig. S1 illustrates three spectra
that were generated from a peptide with different numbers of
calcium adduct formations. The calcium in this data set might
have come from the CaCl2 added to the sample to enhance
the activity of trypsin (59). Another kind of metal adduct abun-
dantly present in this data set was sodium adduct, which is
common in LC-MS/MS experiments. By incorporating the
calcium/sodium adduct into database search as variable
modifications (at aspartic acid, glutamic acid, and the peptide
C terminus), 142 spectra and 205 spectra were identified as
calcium-peptide and sodium-peptide adducts, respectively.
On the other hand, 488 spectra were identified as calcium-
peptide adducts through peptide propagation among the sin-
gle and double-calcium-related spectral pairs with PEP 	

0.02. For sodium, this number was 372. The overlapping
spectra (134 for calcium and 170 for sodium) identified by
database search and peptide propagation had identical pep-
tide sequence assignments, indicating the reliability of these
identifications.

Deamidation—Deamidation (0.98433 Da) was another
abundant modification observed in this data set. It slightly
increased the peptide retention time (0.8 min on average). By
incorporating it as a variable modification (on asparagine and
glutamine) into sequence database search, 165 spectra of
deamidated peptides were identified. On the other hand,
through peptide propagation among the spectral pairs de-
tected with PEP 	 0.02 for this modification, 98 spectra were
identified as deamidated peptides. Of these spectra, 87 were
also identified by database search and had identical peptide
sequence assignments.

Carbamidomethyl DTT—A modification with a mass shift of
151.99699 Da was reported by DeltAMT. Peptide propagation

and modification site location results showed that this modi-
fication occurred on the cysteine residues. Because we set
the cysteine carbamidomethylation (57.021464 Da) as a fixed
modification in the basic database search, the actual mass
shift caused by this modification is in fact 209.01845
(151.99699  57.021464) Da. This is exactly the mass of
carbamidomethylated DTT modification of cysteine that was
discovered by Chalkley et al. on the same data set (Mixture 2,
QTOF instrument) (22). Our result confirms this discovery and
further shows that peptides with this modification tend to
elute significantly earlier (1.842 min on average) than the
ordinary carbamidomethylated peptides. By adding this mod-
ification into sequence database search, 82 spectra with this
modification were identified.

Oxidation and Dehydration—Oxidation (15.99421 Da) was
detected as expected. It significantly decreased the retention
time (-4.101 min on average). Oxidation had already been
specified as a variable modification (on methionine) in the
basic database search, and 99 spectra of oxidized peptides
were successfully identified. The mass shift of 18.00828 Da
corresponds to the neutral mass of a water molecule. In
addition to chemical modifications, such as pyroglutamic acid
formation from N-terminal glutamic acids, it could also result
from in-source fragmentation. Incorporating it into database
search (dehydration of threonine, serine and aspartic acid,
formation of pyroglutamic acid at the peptide N terminus)
identified 14 spectra of dehydrated peptides.

Acetaldehyde—The last interesting modification reported
had an estimated mass shift of 26.01532 Da. This is probably
the acetaldehyde (26) modification, which was also de-
tected by Chalkley et al. (22). Here, we further show that this
modification significantly delayed the elution of peptides by
about 2.6 min on average. Through peptide propagation, we
found that this modification mostly occurred on peptide N
termini. Incorporating this modification (on histidine, lysine,
and peptide N terminus) into database search, 38 spectra of
peptides with this modification were identified, 35 of which
had this modification assigned to the N termini of peptides.

Nonspecific Digestion—Mass shifts corresponding to
amino acid residues or their combinations were also reported,
including isoleucine (I) or leucine (L), arginine (R), lysine (K),
valine (V), glycine (G)—isoleucine (I) or leucine (L), and alanine

FIG. 4. Scatter-histogram of ob-
served � data points around the nom-
inal mass value of 38 Da for the ISB
standard protein mix data set. The
dense data cluster in the small square,
which was automatically located by the
DeltAMT algorithm, was induced by the
calcium adduct formation.
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(A)—valine (V). All of them occurred at the termini of tryptic
peptides, suggesting that they might represent nonspecific or
semispecific digestion of proteins by trypsin. However, the
small retention time differences caused by the I/L and GI/L or AV
removal also indicated in-source fragmentation. When overlap-
ping tryptic and semi-tryptic peptides were detected by LC-MS/
MS, DeltAMT could report their differences as modifications. A
database search was carried out with the same search param-
eters as used in the basic database search but allowing semi-
specific digestion, and 218 spectra of semitryptic peptides were
identified. One the other hand, through peptide propagation
among the spectral pairs detected with PEP 	 0.02 for nonspe-
cific digestion, 14 spectra were identified as semi-tryptic pep-
tides. Again, the nine spectra identified by both methods had
identical peptide sequence assignments.

False Positives—The only uninterpreted mass shift de-
tected by DeltAMT was 104.09558 Da. Six spectral pairs were
detected for this mass shift with PEP 	 0.02. However, three
of them were conflicting pairs. That is, the two spectra in each
of the three pairs were identified as different peptides by
database search. For the other three pairs, none of the spec-
tra in them was identified by database search. Moreover, the
retention time shift was extraordinarily large (-13 min on av-
erage). Therefore, we consider this mass shift a false positive.

Comparison with MS-Alignment—We also analyzed the ISB
data set with the MS-Alignment algorithm for comparison and
validation purposes. The 4085 spectra in this data set were
searched by MS-Alignment against the same database as
was searched by pFind. The whole database, including target
and decoy sequences, contained less than 6 M amino acids in
total. The search parameters were set as follows: instrument,
FT-Hybrid; protease, Trypsin; mods, 2; blind, 1; mod, 57, C,
fix. It took about 9 h for MS-Alignment to complete the search.
The search results were filtered by their p values and the FDR
was estimated using the target-decoy strategy. At 2% FDR, a
total of 1034 spectra were identified, including 961 spectra
matched to peptides from the standard proteins, 55 from

contaminant proteins, 10 from decoy sequences, and eight
from background yeast proteins. The matches to decoy and
yeast sequences were false positives and were discarded.
The remaining 1016 identifications were accepted, among
which 367 were peptides with positive modification masses,
30 were peptides with negative modification masses, and 619
were unmodified peptides. Fig. 5 illustrates the histogram of
modification mass shifts detected by MS-Alignment. It turned
out that almost all of the abundant modifications (� 3 identi-
fied spectra) detected by MS-Alignment were also detected
by DeltAMT. The only one missed by DeltAMT had a mass
shift corresponding to ammonia loss, but MS-Alignment failed
to detect deamidation that was discovered by DeltAMT. Over-
all, the two algorithms largely confirmed each other’s findings.
Although MS-Alignment detected many low-abundance mod-
ifications, this was achieved at the cost of a long search time.
Because ammonia loss, e.g. N-terminal cyclization of gluta-
mine or carbamidomethylated cysteine, is so common and
was abundantly detected by MS-Alignment, we examined the
reason why DeltAMT failed to find it. We decreased the D-
score cut-off value from 10 to 3 and re-analyzed the data. As
a result, a putative modification with D-score of 5.0 was re-
ported with a mass shift of 17.02595 Da (-0.0006 Da from the
theoretical mass of NH3). The estimated standard deviation of
the mass dimension was 0.002 Da, as small as those esti-
mated for other putative modifications. However, the esti-
mated standard deviation of the retention time dimension was
4.05 min, much larger than those estimated for other putative
modifications. It seemed that the ammonia loss had a less
consistent effect on the retention times of peptides than other
modifications we found. In fact, this mass shift may have three
different sources: N-terminal cyclization—then the retention
times should be significantly different, and ammonium adduct
formation or in source fragmentation—then the retention
times should be the same. This explained why this modifica-
tion was so poorly scored that it was missed by the original
analysis of DeltAMT.

FIG. 5. Modification mass shifts de-
tected by the MS-Alignment algorithm
and the corresponding numbers of
identified spectra. Those mass shifts
with more than three identified spectra
are annotated with the nominal mass
shift values and modification names.
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Results for the MaxQuant HeLa Proteome Data Set

Overview—A direct application of the DeltAMT algorithm to
the MaxQuant HeLa proteome data set generated a long list
of putative modifications (supplementary Table S3). The dom-
inant modifications were as expected, i.e. SILAC labels
(8.01400 Da and 10.00844 Da) and oxidation (15.99477 Da),
because this data set was from a SILAC-treated sample.
However, many other modifications were reported, most of
them being additive pseudo-modifications. Their masses
were characterized by fixed mass ladders, e.g. 44.026 Da,
suggesting that they were not peptide modifications but were
actually derived from nonpeptide polymers. Retention time
distribution of the spectra detected as polymers suggested
that the majority of polymers were eluted in the beginning and
the end of chromatography. A plot of retention times versus
precursor masses of all MS/MS spectra uncovered two clus-
ters of polymers, one in the first 30 min and the other in the
last 10 min (shown in supplementary Fig. S2). These two
clusters contain a total of 1811 spectra, none of which was
identified by database search. Therefore, all of the components
eluted during these two stages were probably polymers. Fol-
lowing removal of these polymer spectra, we reanalyzed the
remaining spectra using DeltAMT. As expected, all modification
masses corresponding to polymers disappeared, and only
SILAC labels and oxidation were reported with D-scores above
10. When the D-score cut-off value was relaxed to three, poten-
tial low-abundance modifications were revealed.

Nonpeptide Polymers—Three series of polymers were rec-
ognized, each with a mass ladder of 44.02616, 43.04219, or
72.02107 Da. The first one is probably the well-known poly-
ethylene glycol (PEG) with the structure -(CH2-CH2-O-)n, in
which CH2-CH2-O corresponds to 44.02621 Da, differing by
0.00005 Da from the detected mass value. PEG is widely used

in biomedical research (e.g. in protein purification) and is often
unavoidable in mass spectrometry (60). The second polymer
is likely the polyethyleneimine (PEI) with the structure -(CH2-
CH2-NH-)n, in which CH2-CH2-NH corresponds to 43.04220
Da, differing by 0.00001 Da from the detected mass value.
The third polymer possibly has the formula (C3H4O2)n, where
C3H4O2 corresponds to 72.02113 Da, differing by 0.00006 Da
from the detected mass value. This may be the polymer of
acrylic acid -[CH2-CH(COOH)-]n. The second and the third
polymers seemed to have formed some kind of copolymers
because several combinations of them were detected.

Low-abundance Modifications—To examine if lower-abun-
dance modifications were present, we decreased the D-score
cut-off from ten to three. As a result, several potential modi-
fications were revealed, including methylation, carbamylation,
deamidation, etc. (listed in Table IV). As observed in previous
studies (21, 61), methylation increased the retention times of
peptides, whereas carbamylation decreased the retention
times. Their combinations were consistent in terms of reten-
tion time shifts. For example, the retention time shift caused
by dimethylation was approximately twice as much as that by
methylation. The mass shift of about 44.026 Da was still
detected, indicating that PEG might still exist in the retention
time interval considered (from the 31st minute to the 130th
minute). However, the corresponding retention time shift was
very different from the one detected from the whole retention
time range. Therefore, it might also be a modification on
peptides, possibly hydroxyethylation, which would result in
the same mass shift as observed. No reliable spectral pairs
were detected for those possible low-abundance modifica-
tions, and we did not make further efforts to validate them.

Database Search and Peptide Identification—The 13,572
tandem mass spectra were searched against the target-de-

TABLE IV
Detected modifications for the MaxQuant HeLa proteome data set (within retention time ranging from the 31st minute to the 130th minute)

Mono-modifications

�m (Da) �t (min) D-score Pairs (PEP) Interpretation Mass deviation (Da)

8.01398 0.0299 813.0 4194 (0.02) SILAC label 
0.00022
10.00844 0.0306 516.7 2297 (0.02) SILAC label 0.00017
15.99474 0.0545 163.8 1395 (0.02) Oxidation 
0.00018
14.01558 1.577 8.3 0 Methylation 
0.00007
43.00604 
2.106 8.3 0 Carbamylation 0.00023
41.02658 
1.208 4.5 0 Acetonitrile adduct or amidination

with methyl acetimidate
0.00003

0.98466 
0.067 3.9 0 Deamidation 0.00064

Additive pseudo-modifications

�m (Da) �t (min) D-score Pairs (PEP) Interpretation Mass deviation (Da)

31.98956 0.0715 116.1 898 (0.02) Double oxidations or di-oxidation 
0.00027
114.04269 
0.536 10.3 35 (0.10) Dimethylation  di-carbamylation or

di-carbamidomethylation or GlyGly
ubiquitination


0.00024

28.03128 3.638 9.1 0 Dimethylation 
0.00002
44.02608 4.571 7.6 0 Polymer (PEG) or hydroxyethylation 
0.00014
71.03701 0.446 7.5 0 Dimethylation  carbamylation 
0.00010
85.05261 2.096 5.6 0 Trimethylation  carbamylation 
0.00015
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coy International Protein Index human database using almost
the same search parameters as those used for the ISB data
set with the following exceptions. SILAC labels, i.e. Arginine-
13C615N4 (10.008 Da) and Lysine-13C615N2 (8.014 Da),
were set as variable modifications in addition to methionine
oxidation. The precursor mass tolerance was set to �7 ppm,
as suggested by the authors of the data set. At 1% FDR, 6586
spectra were identified, 2894 of them having SILAC labels.
Through peptide propagation on the detected 6491 SILAC
pairs with PEP 	 0.02, 358 additional spectra were identified.
During propagation, 48 edge conflicts and three node con-
flicts occurred, and involved spectral pairs were discarded.
The increase in the number of identified spectra was relatively
small because the SILAC labels had already been specified in
database search. Besides SILAC labels, oxidation was the
most abundant modification detected in this data set.
Through peptide propagation on 2293 oxidation-related spec-
tral pairs with PEP 	 0.02, 985 additional spectra were iden-
tified. During propagation, 33 edge conflicts and three node
conflicts occurred, and involved spectral pairs were dis-
carded. The total number of interpreted spectra increased by
48%, taking into account the1811 detected polymer spectra.

DISCUSSION

We present in this paper a novel algorithm named DeltAMT
to detect the presence of abundant protein modifications from
LC-MS/MS data. The unique feature of DeltAMT is its exclu-
sive and complete use of peptide precursor information. Thus,
it is extremely fast and insensitive to the quality of fragmen-
tation spectra. Discovering abundantly present modifications
in a sample can not only increase the spectral identification
rate but also consequently increase the chance of identifying
low-abundance proteins or modifications. In addition to mod-
ifications, DeltAMT can also effectively detect other events,
such as isotopic labels, nonspecific digestion, and polymer
contaminants. Therefore, DeltAMT can be used in many cir-
cumstances. For example, one may want to check if any
unwanted chemical modifications or polymers have been
heavily introduced during sample processing. To this end, it
takes only several minutes for DeltAMT to analyze one LC-
MS/MS run and report discoveries, based on which experi-
mental protocols can be improved. In fact, we have success-
fully performed such data analysis and protocol improvement
in experiments for core fucosylated glycoprotein identification
using a preliminary version of the algorithm (62, 63). The
analysis results of DeltAMT are also potentially beneficial for
quantitation analysis of proteins. For example, one can avoid
selecting peptides prone to chemical modifications for quan-
titation analysis. Furthermore, the increased spectral identifi-
cation rate can potentially improve the accuracy of label-free
quantitation.

One limitation of DeltAMT is that it works for abundant
modifications only. However, several fragment information-
based methods already exist that are able to detect low-

abundance modifications. We consider DeltAMT a powerful
complement to these methods. To detect lower-abundance
modifications with DeltAMT, one may use lower D-score cut-
offs. This will increase the level of false positives, but if any-
thing of interest is detected, further analysis can be followed.
Another issue worth mentioning is that because DeltAMT uses
retention time information, its performance and analysis re-
sults depend on sample separation strategy and experimental
configuration. For example, in experiments with offline frac-
tionation, if the modified and unmodified versions of a peptide
are separated into different fractions, then this modification
will not be detected by DeltAMT. Moreover, retention time
shifts caused by modifications vary with LC conditions. For
instance, for acidic modifications, depending on the ion pair-
ing agent used in the mobile phase, the modified peptides
may elute earlier (e.g. when trifluoroacetic acid is the ion
pairing agent) or later (e.g. when acetic acid or formic acid is
used) than their unmodified counterparts. Finally, we point out
that in the current version of DeltAMT, the peptide precursor
data are from the MS/MS spectra exported by the instrument
control software, and a simple strategy is used for data pre-
processing. They are subject to imperfections, such as redun-
dancy, incorrect mono-isotopic masses and coarse retention
time values. In the future, we plan to extract more accurate
precursor information directly from the MS spectra by recov-
ering the retention profiles and recognizing isotopic clusters
of peptides. Despite these limitations mentioned above, con-
sidering the trivial cost and informative outputs of DeltAMT,
we expect that it will become a routine data analysis tool in
most proteomics pipelines.
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